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Abstract
We perform a perturbative calculation of the physical observables, in particular,
pseudo-Hermitian position and momentum operators, the equivalent Hermitian
Hamiltonian operator and the classical Hamiltonian for the PT -symmetric
cubic anharmonic oscillator, H = 1

2m
p2 + 1

2µ2x2 + iεx3. Ignoring terms
of order ε4 and higher, we show that this system describes an ordinary
quartic anharmonic oscillator with a position-dependent mass, and real and
positive coupling constants. This observation elucidates the classical origin
of the reality and positivity of the energy spectrum. We also discuss the
quantum–classical correspondence for thisPT -symmetric system, compute the
associated conserved probability density and comment on the issue of factor
ordering in the pseudo-Hermitian canonical quantization of the underlying
classical system.

PACS number: 03.65.−w

1. Introduction

PT -symmetric quantum mechanics was originated by the observation, initially made by Bessis
and Zinn-Justin, that the Hamiltonian for a cubic anharmonic oscillator,

H = p2

2m
+

µ2

2
x2 + iεx3, (1)

with µ, ε ∈ R, has a real, positive and discrete spectrum. During the last six years, there
have appeared a number of publications [1–8] exploring the properties of the Hamiltonian (1).
Yet the nature of the physical system described by this Hamiltonian has not been clarified.
The present paper aims at addressing this basic issue. We will achieve this aim by computing
the physical observables, the localization probability density and the underlying classical
Hamiltonian for this system. This is the first example of a PT -symmetric quantum system
with configuration space R that allows such a computation.
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As the main technical tools used in our analysis have been developed in the study of the
spectral properties of PT -symmetric Hamiltonians, we will include here a brief account of
the relevant developments.

The first convincing numerical evidence supporting the reality and positivity of the
spectrum of (1) was provided by Bender and Boettcher [1] who made the important observation
that this Hamiltonian was PT -symmetric. Among dozens of publications on the subject
that followed [1] was the paper by Dorey, Dunning and Tateo [9] that provided the first
mathematically rigorous proof of the spectral properties conjectured by Bessis and Zinn-Justin
(see also [10]). From a physicist’s point of view, a more important development was the idea,
put forward by Bender and his collaborators [1, 11], that such PT -symmetric Hamiltonians
might be used as the Hamiltonian operator for an extended/generalized quantum theory.

The main obstacle for realizing this idea was that a non-Hermitian Hamiltonian such as
(1) generated a nonunitary time evolution. This was not compatible with the conventional
probabilistic interpretation of quantum mechanics. The resolution of this problem came as a
by-product of the attempts to characterize the non-Hermitian operators having a real spectrum
[12–16].

Reference [13] lists the necessary and sufficient conditions that ensure the reality of the
spectrum of a diagonalizable operator1. Among these is the condition that H must be Hermitian
with respect to a positive-definite inner product 〈·, ·〉+. This inner product is generally different
from the defining inner product 〈·, ·〉 of the (reference) Hilbert space H in which the operator
H acts. It can be conveniently expressed in terms of a positive-definite (metric) operator
η+ : H → H according to [12]

〈·, ·〉+ = 〈·, η+·〉. (2)

The condition that H be Hermitian with respect to 〈·, ·〉+, i.e., 〈·,H ·〉+ = 〈H ·, ·〉+, is equivalent
to η+-pseudo-Hermiticity of H [12]. This means that η+ belongs to the set UH of all Hermitian
invertible operators η : H → H satisfying2 [12]

H † = ηHη−1. (3)

An interesting property of the set UH of all metric operators η is that to each pair (η1, η2)

of elements of UH there corresponds a symmetry generator η−1
2 η1 of H [12]. Furthermore,

PT -symmetric Hamiltonians H that act in H = L2(R), e.g., (1), are P-pseudo-Hermitian,
i.e., P ∈ UH . This in turn implies that if H has a real spectrum, then P−1η+ = Pη+ commutes
with H. The construction of the physical Hilbert space Hphys that is based on the CPT -inner
product [18] makes implicit use of this observation. As shown in [16] for theories defined
on R and more recently generalized in [19] to theories defined on a complex contour, the C
operator introduced in [18] is related to the metric operator η+ according to

C = Pη+ = η−1
+ P, (4)

and the CPT -inner product is precisely 〈·, ·〉+.
The recent approximate calculations of C for the anharmonic oscillator (1) and its

analogues [8, 20] have also revealed the practical significance of the factorization (4) of C.
These calculations are based on equation (4) and the observation that (being a positive-definite
operator) η+ admits an exponential representation

η+ = e−Q, (5)

where Q is a Hermitian operator.
1 In view of the requirements of the standard quantum measurement theory, physical observables, in general, and the
Hamiltonian, in particular, must be diagonalizable operators [17].
2 Here and throughout this paper, the adjoint of an operator A : H1 → H2 between two Hilbert spaces H1 (with
inner product 〈·, ·〉1) and H2 (with inner product 〈·, ·〉2) is defined to be the unique operator A† : H2 → H1 satisfying
〈·, A·〉2 = 〈A†·, ·〉1.
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The metric operator η+ (which is generally unique up to symmetries of H [15, 16, 21]),
not only determines the structure of the physical Hilbert space but also fixes the observables
of the theory as well [22, 23, 17]. By definition (definition 1), physical observables are the
Hermitian operators acting in the physical Hilbert space Hphys [22, 23, 17], i.e., A : H → H
is an observable if3

〈·, A·〉+ = 〈A·, ·〉+. (6)

Alternatively, physical observables A are η+-pseudo-Hermitian operators acting in H, i.e.,
A† = η+Aη−1

+ .
In order to see the central role played by the metric operator η+ in the construction of the

observables, we recall that as an operator mapping H+ onto H the unique positive square root
ρ = √

η+ of η+ is a unitary operator [26, 17], i.e.,

〈ρ·, ρ·〉 = 〈·, ·〉+. (7)

Hence, the Hermitian operators O acting in Hphys (i.e., the physical observables) may be
obtained from the Hermitian operators o acting in H according to

O = ρ−1oρ. (8)

This is also consistent with the condition [13] that H is related to a Hermitian operator
h : H → H by a similarity transformation

h = ρHρ−1. (9)

The mapping ρ : Hphys → H establishes the unitary equivalence of the PT -symmetric
quantum system SPT having Hphys,H and O as the physical Hilbert space, the Hamiltonian
and the physical observables, and the quantum system S having H, h and o as the physical
Hilbert space, the Hamiltonian and the physical observables, respectively [22, 17]. SPT and
S describe the same physical system because the physical quantities such as the expectation
values and transition amplitudes are independent of the choice of SPT and S.

The advantage of the PT -symmetric description provided by SPT over the Hermitian
description provided by S is that unlike H, the Hermitian Hamiltonian h is generally nonlocal.
This advantage is, however, balanced by the disadvantage that the physical (pseudo-Hermitian)
position X and momentum operators P of SPT are also generally nonlocal. These operators
are defined by [19]

X := ρ−1xρ, P := ρ−1pρ, (10)

where x and p are the conventional position and momentum operators. The main advantage
of the Hermitian description is that it provides means for identifying the underlying classical
system [17]. The classical Hamiltonian is obtained by expressing h in terms of x and p and
replacing the latter with the classical (real-valued) position xc and momentum pc observables.
In general, this yields an expression that may involve powers of h̄. The classical Hamiltonian
Hc is then obtained by evaluating this expression in the limit h̄ → 0, i.e., assuming that this
limit exists,

Hc(xc, pc) := lim
h̄→0

h(xc, pc). (11)

The initial Hamiltonian H may be recovered by performing the so-called η+-pseudo-Hermitian
canonical quantization of Hc and adopting an appropriate factor-ordering prescription [17].

3 As argued in [22], identifying observables with CPT -invariant operators as initially done in [18] leads to a
dynamical inconsistency. The latter is avoided if one modifies this definition as proposed in [24]. This modified
definition is equivalent to definition 1 for symmetric Hamiltonians H (satisfying 〈x|H |x′〉 = 〈x′|H |x〉) and cannot be
applied for nonsymmetric Hamiltonians [25].
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Disregarding the complications due to the factor-ordering problem and assuming that Hc is an
analytic function of xc and pc, we have

Hc(X, P ) = h(X, P ) = h(ρ−1xρ, ρ−1pρ) = ρ−1h(x, p)ρ = H. (12)

Having introduced the η+-pseudo-Hermitian position operator X, we can also address the
issue of determining the conserved probability density ρ for the localization of the system
in the configuration space. This requires the identification of the physical localized states of
the system. Being (the generalized [27]) eigenvectors of X, the localized state vectors are
given by

|ξ (x)〉 = ρ−1|x〉, (13)

where |x〉 are the conventional position eigenvectors. The conserved probability density
associated with a given state vector ψ ∈ Hphys has the form [17]

�(x) = N−1|�(x)|2, (14)

where �(x) is the physical position wavefunction for the state vector ψ , i.e.,

�(x) := 〈ξ (x), ψ〉+ = 〈x|ρψ〉, (15)

where 〈·|·〉 is the usual L2-inner product onH = L2(R) and N := 〈ψ,ψ〉+ = ∫ ∞
−∞ |�(x)|2 dx.4

An important feature of the exponential representation (5) of the metric operator η+ is that
it reduces the calculation of ρ and ρ−1 to that of Q, for

ρ±1 = e∓Q/2. (16)

We will use this observation together with the approach pursued in [8] to perform a perturbative
calculation of X,P, h,Hc and � for the PT -symmetric Hamiltonian (1).

Because we are interested in the issue of finding the classical limit of the PT -symmetric
theory based on the Hamiltonian (1), we wish to retain the factors of h̄. However, for the
simplicity of the calculations and ease of the comparison with the known results, we will
introduce and employ the following dimensionless quantities:

x := �−1x, p := �h̄−1p, (17)

M := �2h̄−1√mµ, ε := �5h̄−2mε, (18)

H0 := 1

2
p2 +

M2

2
x2, H1 := ix3, (19)

H := �2h̄−2mH = 1

2
p2 +

M2

2
x2 + iεx3 = H0 + εH1, (20)

where � is an arbitrary length scale which may be taken as µ2/ε. Clearly, we have [x, p] = i.

2. Calculation of Q

In [8] the authors outline a perturbative calculation of Q for the Hamiltonian (20) taking ε as
the perturbation parameter. They use the identities [C,PT ] = 0 and C2 = 1 to infer that as a

4 The physical position wavefunctions evolve in time according to the Schrödinger equation with h being the
Hamiltonian operator. In general, one can express h in the form p2/(2m) + W , where W is a nonlocal potential (an
infinite series in p with x-dependent coefficients). This in turn implies that the probability current density that together
with � satisfies the continuity equation has a nonlocal dependence on �(x); it is not given by the standard formula,
unless H is Hermitian. This is especially significant in the study of tunnelling and scattering for pseudo-Hermitian
Hamiltonians (having scattering states).
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function of x and p,Q must be even in x and odd in p. Furthermore, imposing [C, H] = 0 and
making use of the fact that H1 is an imaginary cubic potential, they find the operator equation

2ε eQH1 = [eQ, H], (21)

and that Q may be expanded in an odd power series in ε,

Q = Q1ε + Q3ε
3 + Q5ε

5 + · · · , (22)

where Q2i+1 = Q2i+1(x, p) with i = 0, 1, 2, . . . are ε-independent. Next, they expand eQ in
power series in ε, substitute the result in (21) and demand that this equation be satisfied at
each order of ε. This yields a series of operator equations that they iteratively solve for Q2i+1.

The operator equations whose solution yields Q2i+1 may be more conveniently obtained
from the η+-pseudo-Hermiticity of H,

H† = η+Hη−1
+ . (23)

Substituting η+ = e−Q in this equation and noting that H† = H0 − εH1, we have

H0 − e−QH0 eQ = ε(H1 + e−QH1 eQ). (24)

Next, we employ the Baker–Campbell–Hausdorff identity,

e−AB eA = B + [B,A] +
1

2!
[[B,A], A] +

1

3!
[[[B,A], A], A] + · · · , (25)

(where A and B are linear operators) to express (24) as

−[H0,Q] − 1

2!
[[H0,Q],Q] − 1

3!
[[[H0,Q],Q],Q] − · · ·

= ε

(
2H1 + [H1,Q] +

1

2!
[[H1,Q],Q] +

1

3!
[[[H1,Q],Q],Q] + · · ·

)
. (26)

Now, in view of (22), we can easily identify the terms in (26) that are of the same order in
powers of ε. Enforcing (26) at each order, we find the desired operator equations for Q2i+1.
Matching the terms of order ε, ε2, . . . , ε5, we find in this way the following independent
operator equations which agree with those obtained in [8]5:

[H0,Q1] = −2H1, (27)

[H0,Q3] = −1

6
[[H1,Q1],Q1], (28)

[H0,Q5] = −1

6
([[H1,Q1],Q3] + [[H1,Q3],Q1]) +

1

360
[[[[H1,Q1],Q1],Q1],Q1]. (29)

The higher order terms in ε similarly yield operator equations for Q2i+1 with i � 3. As noted
in [8], one can iteratively solve these equations to obtain Q2i+1.

A variation of the approach of [8] is to substitute the ansatz6

Q2i+1 =
i+1∑

j,k=0

cijk{x2j , p2k+1} (30)

in the operator equations for Q2i+1 and to solve for the coefficients cijk . In this way, we have
found the following solutions for (27) and (28), respectively:

Q1 = − 1

M4

[
4

3
p3 + M2{x2, p}

]
= − 1

M4

(
4

3
p3 + 2M2xpx

)
, (31)

5 These equation are obtained at the orders ε, ε3 and ε5, respectively.
6 Here {·, ·} stands for the anticommutator, {A, B} = AB + BA.
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Q3 = 4

M10

[
32

15
p5 +

5

3
M2{x2, p3} + M4{x4, p} + 2M2p

]

= 128

15M10
p5 +

40

3M8
xp3x +

8

M6
x2px2 − 32

M8
p. (32)

These confirm the results of [8] except for the coefficient of the last term in (32). We have
checked the validity of (32) by inserting this relation in (28) and affecting both sides of the
resulting equation on the function f1(x) = x. Using the fact that in the x-representation
p = −i d

dx , we could easily perform the necessary calculations (without having to use any
commutation relations) and check the validity (32).

In fact, we can obtain the coefficients cijk using this method. In order to do this, we can
substitute (30) in the operator equations for Q2i+1 (rather than trying to use the complicated
commutation relations for powers of x and p), affect both sides of these equations on fn(x) = xn

and demand that they are equal for all n = 0, 1, 2, 3, . . . .

3. The equivalent Hermitian Hamiltonian

Having obtained Q, we can easily calculate the Hermitian Hamiltonian

h = ρHρ−1 (33)

associated with the dimensionless Hamiltonian H. Using (16), (25) and (33), we have

h = H +
1

2
[H,Q] +

1

2!22
[[H,Q],Q] +

1

3!23
[[[H,Q],Q],Q] + · · · . (34)

Now, in view of (20) and (22), it is very easy to identify the perturbative expansion of h, i.e.,
find ε-independent operators h(j) such that

h =
∞∑
i=0

h(j)εj . (35)

This yields

h(0) = H0, h(1) = H1 +
1

2
[H0,Q1], (36)

h(2) = 1

2
[H1,Q1] +

1

8
[[H0,Q1],Q1], (37)

h(3) = 1

2
[H0,Q3] +

1

8
[[H1,Q1],Q1] +

1

48
[[[H0,Q1],Q1],Q1], (38)

h(4) = 1

4
[H1,Q3] − 1

192
[[[H1,Q1],Q1],Q1], (39)

h(5) = 1

2
[H0,Q5] +

1

12
([[H1,Q1],Q3] + [[H1,Q3],Q1]) +

1

120
[[[H0,Q3],Q1],Q1]. (40)

In view of the fact that Q1,Q3 and Q5 are Hermitian while H1 is anti-Hermitian, it is not
difficult to see that the terms contributing to h(j) with even j are Hermitian while those
contributing to h(j) with odd j are anti-Hermitian. The fact that h is a Hermitian operator
then suggests that the h(j) with odd j must vanish. There is another argument supporting
this expectation, namely, that because H1 is a cubic potential, the perturbation series for the
ground state energy of H and consequently (the isospectral operator) h must only include even
powers of the perturbation parameter ε [5].
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Using (27)–(29), we can easily show that indeed h(1), h(3) and h(5) vanish identically. This
may be viewed as a consistency check of our calculations. The perturbative expansion of h
valid up to and including terms of order ε5 is, therefore, given by

h = H0 + h(2)ε2 + h(4)ε4 + O(ε6), (41)

h(2) = 1

4
[H1,Q1], (42)

h(4) = 1

4
[H1,Q3] − 1

192
[[[H1,Q1],Q1],Q1], (43)

where we have made use of (27). Next, we use (31) and (32) to obtain the explicit form of h(2)

and h(4). After a lengthy calculation, we find

[H1,Q1] = 6

M4

(
{x2, p2} + M2x4 +

2

3

)
, (44)

[H1,Q3] = − 4

M10
(16{x2, p4} + 15M2{x4, p2} + 64p2 + 6M4x6 + 76M2x2), (45)

[[[H1,Q1],Q1],Q1] = − 48

M12
(8p6 − 8M2{x2, p4} + 9M4{x4, p2}

− 68M2p2 + 10M6x6 + 28M4x2). (46)

Therefore, in view of (42) and (43),

h(2) = 3

2M4

(
{x2, p2} + M2x4 +

2

3

)
, (47)

h(4) = 2

M12

(
p6 − 9M2{x2, p4} − 51

8
M4{x4, p2} − 81

2
M2p2 − 7

4
M6x6 − 69

2
M4x2

)
.

(48)

A simple application of (41) is in the calculation of the energy eigenvalues En of the
Hamiltonian H. If we denote by |n〉 the normalized eigenvectors of the harmonic oscillator
Hamiltonian H0, then we can easily calculate En up to and including terms of order ε3. This
is done using the first-order Rayleigh–Schrödinger perturbation theory which yields

En = M
(
n + 1

2

)
+ 〈n|h(2)|n〉 + O(ε4). (49)

Substituting (47) in this relation and doing the necessary algebra, we find

En = M
(

n +
1

2

)
+

1

8M4
(30n2 + 30n + 11)ε2 + O(ε4). (50)

This is in complete agreement with the earlier calculations reported in [4, 7].
Next, we use (17)–(19) to obtain the expression for the unscaled Hermitian operator h

that is associated with the original Hamiltonian H. This results in

h = p2

2m
+

1

2
µ2x2 +

3

2µ4

(
1

m
{x2, p2} + µ2x4 +

2h̄2

3m

)
ε2 +

2

µ12

(
p6

m3
− 9µ2

m2
{x2, p4}

− 51µ4

8m
{x4, p2} − 7µ6

4
x6 − 81h̄2µ2

2m2
p2 − 69h̄2µ4

2m
x2

)
ε4 + O(ε6) (51)
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= p2

2m
+

1

2
µ2x2 +

1

mµ4

(
{x2, p2} + px2p +

3mµ2

2
x4

)
ε2 +

2

µ12

(
p6

m3
− 63µ2

16m2
{x2, p4}

− 81µ2

8m2
p2x2p2 − 33µ4

16m
{x4, p2} − 69µ4

8m
x2p2x2 − 7µ6

4
x6

)
ε4 + O(ε6), (52)

where we have used the identities

px2p − 1
2 {x2, p2} = h̄2, x2p2x2 − 1

2 {x4, p2} = 4h̄2x2,

p2x2p2 − 1
2 {x2, p4} = 4h̄2p2.

Note that if one does not truncate the perturbation expansion of h, one finds that it is an
infinite series in powers of p. This confirms the assertion that the Hermitian Hamiltonian for a
non-Hermitian Hamiltonian with a real spectrum is, in general, a nonlocal (pseudo-differential)
operator [26, 17]. A remarkable property of the cubic anharmonic oscillator (1) is that the
corresponding Hermitian Hamiltonian h turns out to be a local (differential) operator once one
truncates its perturbation expansion. This is not generally the case.

4. Physical observables

The calculation of the physical observables O : Hphys → Hphys mimics that of h. As we
discussed in section 1, because the reference Hilbert space H for the system is L2(R), the
observables O are obtained from the Hermitian operators o : L2(R) → L2(R) according to
(8). Substituting (16) in this relation and using (25), we have

O = o − 1

2
[o,Q] +

1

2!22
[[o,Q],Q] − 1

3!23
[[[o,Q],Q],Q] ± · · · . (53)

Moreover, due to the particular ε-dependence of Q as given by (22), we can easily determine
the following perturbation expansion for O:

O = o − 1
2 [o,Q1]ε + 1

8 [[o,Q1],Q1]ε2 − 1
2

(
[o,Q3] + 1

24 [[[o,Q1],Q1],Q1]
)
ε3 + O(ε4).

(54)

Next, we calculate the dimensionless η+-pseudo-Hermitian position and momentum
operators

X := ρ−1xρ = �−1X, P := ρ−1pρ = �h̄−1P. (55)

This is done by substituting x and p for o in (54). Doing the necessary calculations, we obtain

X = x +
2i

M4

(
p2 +

1

2
M2x2

)
ε +

1

M6
({x, p2} − M2x3)ε2 + O(ε3), (56)

P = p − i

M2
{x, p}ε +

1

M6

(
2p3 − 1

2
M2{x2, p}

)
ε2 + O(ε3). (57)

We can directly read the expression for the η+-pseudo-Hermitian position operator X and
momentum operator P from these equations provided that we let X → X, P → P/

√
m, x →

x, p → p/
√

m,M → µ, ε → ε. As expected, X and P do not involve h̄.
Equations (56) and (57) show that, as operators acting in L2(R),X and P are not Hermitian.

The fact that by construction they are η+-pseudo-Hermitian implies that as operators acting
in Hphys they are Hermitian [12]. Furthermore, these operators furnish an irreducible unitary
representation of the Heisenberg–Weyl algebra, [X,P ] = ih̄, on the physical Hilbert space
Hphys. They form an irreducible set of basic operators for the quantum system, i.e., other
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observables may be constructed as power series in X and P. For instance, we can express the
Hamiltonian (1) according to

H = P 2

2m
+

1

2
µ2X2 +

1

mµ4

(
{X2, P 2} + PX2P +

3mµ2

2
X4

)
ε2

+
2

µ12

(
P 6

m3
− 63µ2

16m2
{X2, P 4} − 81µ2

8m2
P 2X2P 2 − 33µ4

16m
{X4, P 2}

− 69h̄2µ4

8m
X2P 2X2 − 7µ6

4
X6

)
ε4 + O(ε6), (58)

where we have made use of (9), (10) and (52). This is the manifestly Hermitian representation
of the original Hamiltonian (1).

Another interesting implication of equations (56) and (57) is that if ε 	= 0, the physical
position (X ) and momentum (P) operators do not satisfy the transformation rules of the usual
position (x) and momentum (p) operators under P and T separately,

PXP 	= −X, PPP 	= −P, T XT 	= T , T PT 	= −P.

However, they share the same transformation rule under PT ,

PT XPT = −X, PT PPT = P.

This is consistent with the fact that unlike P and T ,PT is an antilinear η+-pseudo-unitary
operator [21]7. In particular, it implies that, as an operator acting in Hphys,PT is an antilinear
unitary operator. This in turn implies, in view of Wigner’s classification of symmetries in
quantum mechanics [28], that unlikeP and T ,PT defines a physical symmetry of the quantum
system. The fact that P does not correspond to a physical symmetry was to be expected, for
its definition is intertwined with that of x which is not a physical observable for the system
unless ε = 0.

5. The classical limit

The phase space of the underlying classical Hamiltonian for the cubic anharmonic oscillator
(1) is clearly R

2. Having calculated the Hermitian operator h, we can determine the classical
Hamiltonian Hc for this system using (11). In view of (51), the evaluation of the limit in (11)
is trivial. Up to and including terms of order ε5,Hc is given by

Hc = p2
c

2m
+

1

2
µ2x2

c +
3

2µ4

(
2

m
x2

c p
2
c + µ2x4

c

)
ε2

+
2

µ12

(
p6

c

m3
− 18µ2

m2
x2

c p
4
c − 51µ4

4m
x4

c p
2
c − 7µ6

4
x6

c

)
ε4 + O(ε6). (59)

We shall first explore the consequences of neglecting the terms of order ε4 and higher.
Then, we can express Hc in the form

Hc = p2
c

2M(xc)
+

µ2

2
x2

c +
3ε2

2µ2
x4

c + O(ε4), (60)

M(xc) := m

1 + 3µ−4ε2x2
c

= m
(
1 − 3µ−4ε2x2

c

)
+ O(ε4). (61)

7 This can be easily checked using the approach of [16].
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Figure 1. Graph of the orbits in phase space for the Hamiltonian (59) with O(ε6) neglected,
m = µ = 1, ε = 0.1 and E = 1 (dashed–dotted curve), E = 5 (dashed curve), E = 8 (dotted
curve) and E = 10 (full curve). The horizontal and vertical axes are those of xc and pc , respectively.
Note that E
 = 50/3 ≈ 16.7. Hence, our perturbative calculation of the classical orbit for E = 10
is not as reliable as that for E = 1 and E = 5. In particular, the elliptic shape of the E = 1 orbit
is consistent with equation (62).

Therefore, for sufficiently small ε, Hc describes the dynamics of a point particle with a position-
dependent mass M(xc) that interacts with a quartic anharmonic potential. This statement
provides a physical interpretation of the original PT -symmetric cubic anharmonic oscillator
(1). Obviously, this is a valid approximation as long as we can neglect the contribution from
the terms of order ε4 and higher, O(ε4) ≈ 0.

Under this assumption, Hc takes non-negative values; the classically allowed energies E
are non-negative. This is the classical analogue of the fact that the PT -symmetric quantum
Hamiltonian (1) has a positive spectrum. Moreover, it is not difficult to show that the classical
orbits in the phase space for the Hamiltonian (60) are ellipses determined by

p2
c

2m
+

(
µ2

2
+

3ε2E

µ4

)
x2

c = E. (62)

The coupling of the energy E and the perturbation parameter ε is an indication that the above
approximation is valid for low energies, i.e.,

E � E
 := 1
6µ6ε−2. (63)

The inclusion of the terms of order ε4 distorts the above picture. However, as long as
condition (63) holds, the classical (phase-space) orbits are closed curves. Figure 1 shows the
graph of such orbits.

If we perform the η+-pseudo-Hermitian quantization of the classical Hamiltonian (59),
namely, let xc → X,pc → P and {·, ·}c → −ih̄−1[·, ·], where {·, ·}c is the classical Poisson
bracket, we recover the expression (58) for the original Hamiltonian (1), provided that we
adopt the correct factor-ordering prescription. This observation underlines the importance of
the issue of factor-ordering ambiguity in pseudo-Hermitian and, in particular, PT -symmetric
quantum mechanics.
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Figure 2. Graph of the invariant probability density � for ψ(x) = e−x2/2, h̄ = m = µ = 1 and
ε = 0 (full curve), ε = 0.2 (dashed curve) and ε = 0.25 (dotted curve).

6. The conserved probability density

Expression (14) for invariant probability density for the localization of the quantum system
under consideration involves the physical wavefunction (15). Given a state vector ψ ∈ Hphys,
the perturbation expansion for the corresponding physical wavefunction is given by

�(x) = 〈x| e−Q/2|ψ〉 = 〈x|
∞∑

k=0

(−1)kQk

2kk!
|ψ〉

= ψ(x) − 1
2 〈x|Q1|ψ〉ε + 1

8 〈x|Q2
1|ψ〉ε2 − 1

2

(〈x|Q3|ψ〉 + 1
24 〈x|Q3

1|ψ〉) ε3 + O(ε4),

(64)

where we have used (16) and (22). We can obtain the explicit form of the terms appearing on
the right-hand side of (64) using (31), (32) and (17)–(19), and the identity 〈x|p = −ih̄ d

dx
〈x|.

The result may be expressed as

�(x) = (1 + εL̂1 + ε2L̂2 + ε3L̂3)ψ(x) + O(ε4), (65)

where

L̂1 := − 1
2Q̂1, L̂2 := 1

8Q̂2
1, L̂3 := − 1

2Q̂3 − 1
48Q̂3

1,

Q̂1 := 2i

µ4

[
−2h̄2

3m

d3

dx3
+ µ2

(
x2 d

dx
+ x

)]
,

Q̂3 := 4i

µ10

[
− 32h̄4

15m2

d5

dx5
+

10h̄2µ2

3m

(
x2 d3

dx3
+ 3x

d2

dx2

)
− 2µ4

(
x4 d

dx
+ 2x3

)
+

8h̄2µ2

m

d

dx

]
.

Having obtained the general form of the physical wavefunction, we can calculate the
invariant probability density � according to (14). Figures 2 and 3 show the plots of � for
ψ(x) = e−x2/2 and x e−x2/2.
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Figure 3. Graph of the invariant probability density � for ψ(x) = x e−x2/2, h̄ = m = µ = 1 and
ε = 0 (full curve), ε = 0.1 (dashed curve) and ε = 0.15 (dotted curve).

7. Conclusion

We have performed a comprehensive study of the physical content of the PT -symmetric
quantum system based on the non-Hermitian cubic anharmonic oscillator (1). We showed how
the general ideas developed within the framework of the pseudo-Hermitian quantum mechanics
may be applied to this model. The result is an explicit characterization of the corresponding
Hermitian Hamiltonian, physical observables, probability density and the underlying classical
system. The only other PT -symmetric system (with an infinite-dimensional state space)
for which a similar treatment has been possible is the PT -symmetric square well [17]. An
important difference between the latter system and the anharmonic oscillator (1) is that the
effects of non-Hermiticity of this oscillator do survive the classical limit; non-Hermiticity is
not a by-product of the (pseudo-Hermitian) quantization.

Neglecting fourth and higher order terms in our perturbative treatment, we showed that
the PT -symmetric cubic anharmonic oscillator (1) describes a point particle having a
position-dependent mass and interacting with a real quartic anharmonic potential. This
provides a classical justification for the positivity of the spectrum of (1). The same
argument applies to the cases where we should keep the terms of order up to (and
including) five.

The pseudo-Hermitian quantization of the classical Hamiltonian defined by the appropriate
metric operator together with a particular factor-ordering prescription yields the original local
PT -symmetric Hamiltonian while the usual canonical quantization of the same classical
Hamiltonian with the appropriate factor-ordering prescription leads to the corresponding
equivalent nonlocal Hermitian Hamiltonian.

The approach pursued in this paper may be applied to other PT -symmetric and non-
PT -symmetric non-Hermitian Hamiltonians with a real spectrum. In general, however, the
nonlocality of the corresponding equivalent Hermitian Hamiltonian may manifest itself at each
order of the perturbation theory. This has already been the case for the PT -symmetric square
well studied in [17]. In view of the results of [8], the same is the case for the PT -symmetric
cubic potential, i.e., (1) with µ = 0. An interesting subject of future study is to extend the
approach pursued here to the field theoretical analogue of (1). Such a study should reveal the
structure of the underlying classical field theory.
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Note. After the online announcement of the preprint of this paper (quant-ph/0411137),
Hugh Jones sent me his preprint: quant-ph/0411171, in part of which he also studies the
PT -symmetric cubic anharmonic oscillator.
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